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The climatological seasonal cycle of the sea surface temperature (SST) in the

north-eastern tropical Atlantic (7–25◦N, 26–12◦W) is studied using a mixed layer heat

budget in a regional ocean general circulation model. The region, which experiences

one of the larger SST cycle in the tropics, forms the main part of the Guinea Gyre.

It is characterized by a seasonally varying open ocean and coastal upwelling system,

driven by the movements of the intertropical convergence zone (ITCZ). The model annual

mean heat budget has two regimes schematically. South of roughly 12◦N, advection

of equatorial waters, mostly warm, and warming by vertical mixing, is balanced by net

air-sea flux. In the rest of the domain, a cooling by vertical mixing, reinforced by advection

at the coast, is balanced by the air-sea fluxes. Regarding the seasonal cycle, within

a narrow continental band, in zonal mean, the SST early decrease (from September,

depending on latitude, until December) is driven by upwelling dynamics off Senegal and

Mauritania (15–20◦N), and instead by air-sea fluxes north and south of these latitudes.

Paradoxically, the later peaks of upwelling intensity (from March to July, with increasing

latitude) essentially damp the warming phase, driven by air-sea fluxes. The open ocean

cycle to the west, is entirely driven by the seasonal net air-sea fluxes. The oceanic

processes significantly oppose it, but for winter north of ∼18◦N. Vertical mixing in

summer-autumn tends to cool (warm) the surface north (south) of the ITCZ, and advective

cooling or warming by the geostrophic Guinea Gyre currents and the Ekman drift. This

analysis supports previous findings on the importance of air-sea fluxes offshore. It mainly

offers quantitative elements on the modulation of the SST seasonal cycle by the ocean

circulation, and particularly by the upwelling dynamics.
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FIGURE 13 | Latitude-time Hovmöller plots along the coastal region (averaged from the coast to 18◦W) of the mean seasonal cycles. (A) model total

temperature trend (shading and contours, ◦C.month−1), (B) air-sea heat vertical process (shading), and SST model (contours, ◦C), (C) total oceanic trend (shading,
◦C.month−1 ) and ratio of net air-sea flux effect over ocean effect (contours, %), (D) trend associated with vertical processes (shading, ◦C.month−1 ) and maximum

vertical velocities between surface and thermocline (contours, m.month−1 ) and (E) horizontal processes (shading, ◦C.month−1 ) and ratio of horizontal processes over

vertical processes (contours, %).

cooling by air-sea fluxes. The seasonal variations of the SST
can be described by a CP of decreasing and then minimum
SST (November-May), and a WP (June–October) of increasing
SST reaching a maximum in summer. Both are, respectively,
associated with maximum then minimum coastal upwelling
south of ∼20◦N (Cape Timilis), and vice-versa north of the
Cape. Two sub-domains in terms of ocean circulation and
heat budget are separated grossly by longitude 18◦W: a narrow
continental band of a few degrees of longitude next to West-
Africa characterized by ocean frontal dynamics and intense
signals, and a vast open ocean region to the west that displays
smoother fields and weaker signals. The seasonal heat budget
explaining the SST cycle is:

(1) The continental band: the cooling starts early September
north of the Cape Verde Peninsula. North of Cape Timilis,
it is driven by the decrease of the net air-sea flux warming
effect, due to the seasonal attenuation of solar radiation. It
is damped by the decrease of the upwelling-forced cooling

trend, due to the seasonal Ekman pumping attenuation.
South of 20◦N, down to the Cape Verde Peninsula (15◦N),
the constructive effects of both air-sea fluxes and, in larger
proportion, upwelling dynamics, explain the SST cooling
and its October peak of intensity. Later on the latter
dominates the cooling season. From 15 to 7◦N and from
October to December, the net air-sea flux negative trend
triggers the cooling, whereas temperature inversion and
warm geostrophic currents damp it. Regarding the second
phase of the SST cycle, the start of the warming season,
regardless of latitude, is forced by the net air-sea flux, and
damped by upwelling dynamics.

(2) The open ocean: The cooling and warming phases are
fundamentally driven by the seasonal net air-sea flux effect,
against the oceanic processes that partly oppose it, except
north of 18◦N particularly. The March SST cooling is
slightly amplified by the intensifying Guinea Gyre upwelling
in summer-autumn, which tends to cool the surface by
turbulent mixing, especially near 16◦N. Further south,
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FIGURE 14 | Same as in Figure 13 but for the heat budget terms averaged between18◦W and 26◦W.

warming by temperature inversions and horizontal currents,
opposes the net air-sea flux effect.

Near the continent, our results support the preliminary model
study by Carton and Zhou [20] pointing out to the leading role
of wind-driven coastal upwelling dynamics for the SST cycle
from 10 to 20◦N. It is however verified only for the cooling
phase from September to early March. The warming phase
starting in March-April in our simulation is driven instead by
the seasonal increase of the solar radiations. The detailed analysis
of the upwelling dynamics suggests that the total horizontal
contribution represents more than 50% of the effect associated
with vertical processes in general. North of 20◦N and south of
12◦N, it is often stronger than the effect of vertical processes.
Advection of waters, especially from the north, is therefore
an essential contributor to the coastal upwelling system heat
budget, when SST is in its decreasing phase. Over the open
ocean, west of ∼18◦W, our result supports most of those of
Foltz et al. [22]. South of the mean ITCZ location however,
we could evidence warming by vertical turbulent processes
associated with temperature inversions, found within barrier
layers in the region. Due to these inversions, we found that the

Guinea Dome upwelling is able to generate a surface cooling
only in the northern half of the GD area. It clarifies the results
from Yamagata and Iizuka [7], pertaining to the thermocline and
not to the ML, which explained the decrease in heat content
by horizontal and vertical divergence of the heat transport in
all GD.

Our model results are limited by inherent errors due to
the relatively low horizontal and vertical resolution near the
coast, and uncertainties in air-sea fluxes. Despite the biases in
the represented thermocline, ML and mesoscale structures, we
hope that our paper can provide nevertheless a relevant basis
for further studies of the variability of SST and currents in
the ANETUS, in particular at other challenging time-scales, like
intra-seasonal and interannual ones.

Important limitations in the present study are due to the
scarcity of in-situ observations. Additional studies of ocean
currents, upper ocean turbulence and mixing, and more robust
estimates of air-sea heat fluxes are needed offshore West Africa.
This will require the implementation of measuring instruments
tomonitor the coastal region over long time periods, such as fixed
moorings performing oceanic and atmospheric measurements.
Such measurements will allow us to better evaluate numerical
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models and improve our understanding of regional ocean-
atmosphere exchanges and climate variability.
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